Metal inducible activity of the oil palm metallothionein-like gene promoter (MT3-A) in prokaryotes.
نویسندگان
چکیده
Reporter gene activity under the regulation of the oil palm metallothionein-like gene, MT3-A promoter was assessed in prokaryotes. Vector constructs containing MT3-A promoter with (W1MT3-A) and without (W2MT3-A) five prime untranslated region (5'-UTR) fused to ß-glucuronidase (GUS) gene in pCAMBIA 1304 vector were produced. 5'-rapid amplification of cDNA ends (RACE) using mRNA isolated from Escherichia coli and Agrobacterium tumefaciens harboring W1MT3-A confirmed that fusion transcripts of MT3-A 5'-UTR-GUS were successfully produced in both bacteria. Competitive PCR and GUS fluorometric assay showed changes in the level of GUS gene transcripts and enzyme activity in response to increasing concentrations of Cu²+ and Zn²+. The application of Cu²+ increased GUS activity and GUS mRNA level in both bacteria. In E. coli, a high level of GUS activity driven by W1MT3-A and W2MT3-A was observed in treatment with 25 μM Cu²+ resulting in an increase in the GUS mRNA level to 7.2 and 7.5 x 10⁻⁴ pmol/μl respectively, compared to the control (5.1 x 10⁻⁴ pmol/μl). The lowest GUS activity and GUS mRNA level were obtained for W1MT3-A and W2MT3-A in the presence of 100 μM Cu²+ in both bacteria compared to the control (without Cu²+). The application of different Zn²+ concentrations resulted in a strong decrease in the GUS activity and GUS mRNA level in E. coli and A. tumefaciens. These findings showed that the oil palm MT3-A promoter is functional in prokaryotes and produced detectable GUS transcripts and enzyme activities. This promoter may potentially be used in prokaryotic systems which require metal inducible gene expression.
منابع مشابه
Location-Specific Epigenetic Regulation of the Metallothionein 3 Gene in Esophageal Adenocarcinomas
BACKGROUND Metallothionein 3 (MT3) maintains intracellular metal homeostasis and protects against reactive oxygen species (ROS)-induced DNA damage. In this study, we investigated the epigenetic alterations and gene expression of the MT3 gene in esophageal adenocarcinomas (EACs). METHODS AND RESULTS Using quantitative bisulfite pyrosequencing, we detected unique DNA methylation profiles in the...
متن کاملFunction of Metallothionein-3 in Neuronal Cells: Do Metal Ions Alter Expression Levels of MT3?
A study of factors proposed to affect metallothionein-3 (MT3) function was carried out to elucidate the opaque role MT3 plays in human metalloneurochemistry. Gene expression of Mt2 and Mt3 was examined in tissues extracted from the dentate gyrus of mouse brains and in human neuronal cell cultures. The whole-genome gene expression analysis identified significant variations in the mRNA levels of ...
متن کاملCharacterization of a novel plant promoter specifically induced by heavy metal and identification of the promoter regions conferring heavy metal responsiveness.
The bean (Phaseolus vulgaris) stress-related gene number 2 (PvSR2) gene responds to heavy metals but not to other forms of environmental stresses. To elucidate its heavy metal-regulatory mechanism at the transcriptional level, we isolated and characterized the promoter region (-1623/+48) of PvSR2. Deletions from the 5' end revealed that a sequence between -222 and -147 relative to the transcrip...
متن کاملMetallothionein: An Overview on its Metal Homeostatic Regulation in Mammals Metalotioneina: Una Visión General de su Regulación Homeostática de Metales en Mamíferos
Metallothionein (MT) is a ubiquitous protein with a low molecular weight of 6-7 kDa weight and it was first identified in the kidney cortex of equines as a cadmium (Cd)-binding protein responsible for the natural accumulation of Cd in the tissue. The mammalian MT contains 61 to 68 amino acid residues, in which 18 to 23 cysteine residues are present. The expression of MT starts by binding of met...
متن کاملExpression Pattern of the Synthetic Pathogen-Inducible Promoter (SynP-FF) in the Transgenic Canola in Response to Sclerotinia sclerotiorum
Sclerotinia sclerotiorum is a phytopathogenic fungus which causes serious yield losses in canola. A pathogen inducible-promoter can facilitate the production of Sclerotinia-resistant transgenic canola plants. Inthis study, the “gain of function approach” was adopted for the construction of a pathogen-inducible promoter.The synthetic promoter technique was used, which involved the in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bioscience and bioengineering
دوره 111 2 شماره
صفحات -
تاریخ انتشار 2011